Mandatory Parameters
readers(DimensionBundle)readerTrain: name of the reader class for the training datareaderTrainParams: a list of parameterName-value pairs to configure the training data readerreaderTest: name of the reader class for the test data (not necessary for Crossvalidation)readerTestParams: a list of parameterName-value pairs to configure the test data reader (not necessary for Crossvalidation)
featureSet: a list of feature extractor class names (the feature extractors to use)pipelineParameters: a list of parameterName-value pairs (parameters necessary to configure the feature extractors)dataWriter: a DataWriter class (a writer to produce the input for the classification framework, e.g. Weka)classificationArguments: a Weka/Meka classifier class and list of arguments to parametrize it (the classification algorithm)featureMode: one ofdocument,unit,pair, orsequencelearningMode: one ofsingleLabel,multiLabel, orregression
Optional Parameters
threshold: boolean (the threshold to create a bipratition from a ranking; only for multiLabel learning mode)featureSelection(DimensionBundle)attributeEvaluator: Weka attribute selection evaluation class and list of arguments to parametrize it (the attribute evaluation algorithm)featureSearcher: Weka attribute selection search class and list of arguments to parametrize it (the ranking algorithm; only for singleLabel learning mode)labelTransformationMethod: a Mulan label transformation method (the label transformation method; only for multiLabel learning mode)numLabelsToKeep: integer (the number of features which will be selected; only for multiLabel learning mode)applySelection: boolean (whether to actually apply the )
developerMode: boolean (if true, you will not be warned when using feature extractors incompatible with the specifiedfeatureMode)